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ABSTRACT: Numerical investigations of a full three-
dimensional (3D) packing process and flow-induced
stresses are presented. The model was constructed on the
basis of a 3D nonisothermal weakly compressible visco-
elastic flow model combined with extended pom-pom
(XPP) constitutive and Tait state equations. A hybrid finite
element method (FEM)–finite volume method (FVM) is
proposed for solving this model. The momentum equa-
tions were solved by the FEM, in which a discrete elastic
viscous stress split scheme was used to overcome the elas-
tic stress instability, and an implicit scheme of iterative
weakly compressible Crank–Nicolson-based split scheme
was used to avoid the Ladyshenskaya–Babuška–Brezzi
condition. The energy and XPP equations were solved by
the FVM, in which an upwind scheme was used for the
strongly convection-dominated problem of the energy

equation. Subsequently, the validity of the proposed
method was verified by the benchmark problem, and a
full 3D packing process and flow-induced stresses were
simulated. The pressure and stresses distributions were
studied in the packing process and were in agreement
with the results of the literature and experiments in tend-
ency. We particularly focused on the effects of the elastic-
ity and pressure on the flow-induced stresses. The
numerical results show that normal stress differences
decreased with incremental Weissenberg number and
increased with incremental holding pressure. The research
results had a certain reference value for improving the
properties of products in actual production processes.
VC 2012 Wiley Periodicals, Inc. J Appl Polym Sci 000: 000–000, 2012
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INTRODUCTION

Injection molding is one of the most versatile poly-
mer-processing techniques for producing plastics
parts.1 Polymer melts experience complex changes
in the injection-packing process; for example, a high
holding pressure induces the orientation of polymer
molecules along the flow direction. The frozen-in
orientation of the polymer molecules is named the
flow-induced stress in parts. The existence of flow-
induced stress is responsible for the anisotropy of
the mechanical, thermal, and optical properties.
Therefore, the investigation of stress distribution
attracts wide attention; particularly, many research-
ers have used experimental methods, such as bire-
fringence, the layer-removal method, the incremental
hole-drilling method, and the photoelasticity method
to determine the stress distribution.2–4 However,
these experiments could hardly trace the transient
change of flow-induced stress in the packing pro-
cess. In general, computer simulation and experi-

mentation are complementary to each other. Hence,
it is necessary to study the flow characteristics and
the flow-induced stress distribution of the packing
stage with computer simulation.
So far, numerical simulations of the flow-induced

stress have mainly been done with the compressible
Leonov model5–7 and Phan–Thien–Tanner (PTT) con-
stitutive equation8 based on the generalized Hele–
Shaw (GHS) flow model in the packing or postfilling
stage. In these simulations, the flow-induced stress
associated with the Leonov model is related to flow-
induced birefringence through the linear stress–opti-
cal rule in literatures6,7 so that the predicted birefrin-
gence can be compared with the experimental
results. Cao et al.8 provided a semianalysis method
to simulate the flow-induced stress distribution on
the basis of the PTT constitutive equation in injection
molding. In terms of the flow model, although GHS
has been extensively applied in various research
because of its advantages of simplified calculation, it
cannot do anything to capture some information,
such as fountain flow and the kinematics in areas
where the shear and extensional deformations con-
tribute significantly to the stress field.9,10 Fortu-
nately, full three-dimensional (3D) models simula-
tion can generate complementary and more detailed
information related to the problems mentioned pre-
viously. Some numerical simulations in full 3D have
been developed for the filling stage in recent
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years.10–16 For example, the finite element method
(FEM) was first used10,12 to simulate the 3D filling
stage, and then, the Petrov–Galerkin (PG) method13,14

was proposed to prevent potential numerical instabil-
ities in the FEM. In the finite volume method (FVM)
formulation, a high-resolution interface-capturing
method15 and a 3D two-phase model16 that avoids
the use of the ghost fluid method are used to simu-
late the injection-molding filling stage. However, full
3D simulation of the packing stage in injection mold-
ing has been rather scarce until now. Most simula-
tions have been based on the GHS model,17,18 and
only Kang et al.19 gave an isothermal 3D example in
the literature, in which penalty formulation was
employed to simulate the postfilling of injection
molding. In terms of the stress model, the Leonov
model was derived from classical elastic network
potential energy theory, the PTT model was devel-
oped on the basis phenomenological theory, and the
theoretical foundation of the extended pom-pom
(XPP) model20,21 was the molecular theory of rheol-
ogy. To sum up the previously analysis, the XPP
model can provide a good fitting to the rheology of
polymer melts.

In this study, we mainly focused on the numerical
investigation of the complex rheological behavior in
the 3D packing stage and on flow-induced stress
evolution. In our numerical simulations, the 3D non-
isothermal weakly compressible viscoelastic flow
was considered, and it was governed by the XPP
model combined with the viscosity model of Cross
and Williams–Landel–Ferry (WLF). Meanwhile, the
Tait state equation was introduced to deal with com-
pressibility of the polymer melt. To our knowledge,
a full 3D packing process incorporating the XPP
model for flow-induced stresses has not yet been
studied.

However, it is extremely difficult to numerically
simulate a full 3D packing process because of flow-
induced stress. First, the computation complexity
and Ladyshenskaya–Babuška–Brezzi (LBB) condition
are two great difficulties. To overcome these difficul-
ties, the fractional step algorithm is introduced into
the FEM formulation, and it uncouples the pressure
term from the velocity components.22 Actually, the
fractional step algorithm can avoid the LBB condi-
tion only when the time step exceeds some threshold
value. Unfortunately, the high viscosity of the poly-
mer requires the time step to be very small for the
explicit scheme. Therefore, an implicit scheme has to
be employed, and one needs to introduce an itera-
tive process to avoid solving three momentum equa-
tions simultaneously. Second, the high specific heat
capacity of the polymer results in the energy equa-
tion being a strongly convection-dominated diffusion
equation. To resolve this kind of problem in FEM,
various stabilization techniques, such as the stream-

line upwind, PG, and streamline upwind PG meth-
ods, need to be employed. However, those stabiliza-
tion techniques increase the difficulty of spatial
discretization. So we considered introducing the
upwind scheme (US) in the FVM to solve this prob-
lem. Third, the lack of ellipticity of the momentum
equation is an important problem in viscoelastic
flow analysis. Some methods, such as the explicitly
elliptic momentum equation formulation,23 elastic
viscous stress split formulation,24 and discrete elastic
viscous stress split (DEVSS) scheme,25 have been
studied to solve this problem. DEVSS has been pro-
ven to be very effective.26,27 Fourth, the stresses
equations exhibit convection-dominated characteris-
tics as the Weissenberg number (We) increases, so
the stresses were solved in the FVM formulation
and the energy equation.
To sum up the previous arguments, a hybrid

FEM–FVM was proposed to simulate the flow-
induced stresses on the basis of the XPP model. The
proposed method was motivated by the DEVSS tech-
nique adopted for momentum equations, and the
equations were discretized by the iterative implicit
weakly compressible Crank–Nicolson-based split
(WCNBS) scheme in the FEM formulation. The energy
and XPP equations were discretized in the FVM for-
mulation in which an US was used for the energy
equation. The proposed hybrid scheme was applied
to simulate the full 3D packing process with flow-
induced stresses. Particularly, the influences of the
holding pressure and the elasticity on the first and
second normal stress differences (N1 and N2, respec-
tively) are discussed.

MATHEMATICAL MODEL

Governing equations

The flow of polymer melts in the packing stage is
governed by the conservation of mass, momentum
and energy equations, together with a constitutive
equation. They are given as follows:

qt þr � quð Þ ¼ 0 (1)

qut þ qu � ru ¼ gsr2u�r� pþr � sþ gs=3r r � uð Þ
(2)

Cp qTt þ qu � rTð Þ ¼ jr2T þ gs _c
2 þ s : ru (3)

where the subscript t denotes the time derivative, q is
the density, u is the velocity vector, p is the pressure,
gs is the Newtonian (solvent) contribution of the total
viscosity [g(T, _c, p), where _c is the shearing rate], s
is the elastic stress tensor, Cp is the specific heat, j is
the thermal conductivity, T is the temperature.
When the polymeric (elastic) contribution gp of

the total viscosity g(T, _c, p) is introduced and
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the coefficient of thermal expansion is defined as
b ¼ gs/g, the governing eqs. (1)–(3) can made be
nondimensional via

x� ¼ x=L;u� ¼ u=U; t� ¼ tU=L;q� ¼ q=qr;p
� ¼ p=ðqrU2Þ;

T� ¼ T=Tr; s� ¼ sL=ðgrUÞ;g�ðT; _c;pÞ ¼ gðT; _c;pÞ=gr

where x is the space vector, L is the length scale, U is
the velocity scale, qr is the density scale, Tr is the tem-
perature scale, and gr is the viscosity scale. As a mat-
ter of convenience, the asterisk is omitted and g(T, _c,
p) is written as g. Also, the governing eqs. (1)–(3)
can be written as follows:

qt þr quð Þ ¼ 0 (4)

qut þ quru ¼ gb=Rer2u�rpþ 1=Rers

þgb=ð3ReÞr ruð Þ ð5Þ

Pe qTt þ qurTð Þ ¼ r2T þ Brbg _c2 þ Brs : ru (6)

where Re is the Reynolds number (Re ¼ qrUL/gr),
Pe is the P�eclet number (Pe ¼ qrCpUL/j), and Br is
the Brinkman number [Br ¼ grU

2/(jTr)].

XPP model

In this study, the single equation version of the XPP
model in multi-mode form28,29 was used. The consti-
tutive equation for the XPP model is

f ðk; sÞsþ k0;b s
rþG0½f ðk; sÞ � 1�Iþ a

G0
s � s ¼ 2k0bG0D

(7)

where k0b is the orientation relaxation time, I is the
unit tensor, D is the rate of deformation tensor
[D ¼ 1

2 ðruþ ðruÞTÞ], G0 is the linear relaxation mod-
ulus, a is the anisotropy parameter, the symbol ‘‘!’’
represents the following upper-convected derivative

s
r ¼ os

ot
þ u � rs� ruð ÞTs� sru (8)

and the function f(k,s) is given by

f ðk; sÞ ¼ 2
k0b
k0s

em k�1ð Þ 1� 1

k

� �
þ 1

k2
1� atr s � sð Þ

3G2
0

� �
(9)

where k0s is the backbone stretch relaxation time, m
is inversely proportional to the number of arms (q),
m ¼ 2/q, tr(�) is the trace of tensor and k is the back-
bone stretch and the expression is related to s as
follows in the XPP model

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jtr sð Þj

3G0

s
(10)

Thus, the polymeric tensor s is defined by eqs.
(7)–(10).
We define gp ¼ G0k0b and e ¼ k0s/k0b, where e is

the ratio of the stretch to the orientation relaxation
time. This shows that small values of e correspond
to highly entangled backbones. The constitutive
equation possesses features of the Giesekus model
because a nonzero N2 is predicted when a is not
equal to zero. The parameter m in the exponential
term was incorporated into the stretch relaxation
time, to remove the discontinuity from the gradient
of the extensional viscosity.
The nondimensional form of eq. (7) is as follows:

f ðk;sÞsþWe s
rþ 1�bð Þ

We
½f ðk;sÞ�1�IþaWe

1�b
s �s¼2 1�bð ÞD

(11)

where Weissenberg number We ¼ k0bU/L.

Viscosity model

Because of the high-temperature sensitivity of the
polymer melt viscosity, the Cross model is the most
appropriate model to study the problem of noniso-
thermal polymer melt flow and was chosen to assess
the total viscosity of the polymer melt. In addition,
the Cross approach was selected to better adjust the
temperature and pressure sensitivities of the zero-
shear-rate viscosity.30

The Cross model has seven parameters and its
expression is as follows

g T; _c; pð Þ ¼ g0 T; pð Þ
1þ g0 _c=s�ð Þ1�n

(12)

where g0(T,p) is the melt viscosity under zero-shear-
rate conditions, s* is the model constant that shows
the shear stress rate from which the pseudoplastic
behavior of the melt starts, and n is the model con-
stant that symbolizes the pseudoplastic behavior
slope of the melt as 1 � n.
The WLF expression is considered to determine

the zero-shear viscosity (g0) of the melt

g0 ¼ D1 exp
�A1 T � T̂

� �
A2 T � T̂

� �
0
@

1
A (13)

where

T̂ ¼ D2 þD3p

and

A2 ¼ ~A2 þD3p
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where T̂ is the glass-transition temperature of the
melt, A1 is the model constant that shows the tem-
perature dependence of the melt glass-transition
temperature under zero-shear-rate conditions, D1 is
the model constant that registers the melt viscosity
under zero-shear-rate conditions at the melt glass-
transition temperature and at atmospheric pres-
sure, D2 is the model constant that registers the
glass-transition temperature, D3 is the model con-
stant that symbolizes the variation of the glass-
transition temperature of the melt according to the
pressure, p is the pressure, and Ã2 is a model pa-
rameter that depends on the type of polymer melt
that has been considered.

State equation

We introduce a Pressure-Volume-Temperature (PVT)
state equation to satisfy the completeness of govern-
ing equations. Tait equation is usually considered as
the classical empirical equation and is capable of
describing both the liquid and solid regions.31 Tait
equation can be represented as follows:

1

q
¼ Vðp;TÞ ¼ V0ðTÞ 1� C ln 1� P

BðTÞ
� �� 	

þ Vt T; pð Þ

(14)

where V(p,T) is the specific volume.
The related terms can be expressed as follows:

V0ðTÞ ¼ b1m þ b2mðT � b5Þ ifT > Tt

b1s þ b2s T � b5ð Þ ifT < Tt

�
(15)

BðTÞ ¼ b3m exp½�b4mðT � b5Þ� ifT > Tt

b3s exp½�b4sðT � b5Þ� ifT < Tt

�
(16)

VtðT; pÞ ¼ 0 ifT > Tt

b7 exp½b8ðT � b5Þ � b9p� ifT < Tt

�
(17)

where C ¼ 0.0894 is a universal constant; b1, b2, b3,
b4, b5, b6, b7, b8, and b9 are material constants; the
subscripts m and s identify the melt and solid,
respectively; Tt ¼ b5 þ b6p is the glass-transition
temperature of the melt, where b5 indicates the
transition temperature under zero-pressure condi-
tions and b6 indicates the linear variation of the
transition temperature with increasing pressure;
V0(T) is the isothermal specific volume under zero-
pressure conditions; B(T) expresses the degree of
influence of pressure on the specific volume; and
Vt(T,p) is introduced to account for the volume
decrease due to crystallization. For the amorphous
polymers, the parameter b1m equals b1s so that V0(t)
is continuous at T ¼ b5 ¼ Tt (p ¼ 0). So, in the

nonisothermal melt flow, we adopted the two-
region Tait state equation.

NUMERICAL METHODS

We give some statements before giving the numeri-
cal methods. Because of the compressibility of fluid,
q is also a variable in governing equations. For com-
pressible flows, one must discretize the variable q
like u or p. However, because the compressibility of
a weakly compressible fluid is very small in normal
conditions, q is not discretized in space, and the q
space derivations are ignored in governing equa-
tions. Furthermore, within a typical time subinterval
[tn, tnþ1] with Dt ¼ tnþ1 � tn, we adopt the q at tn
time to calculate the others variables at tnþ1 time.
Then, we calculate q of each point at tnþ1 time. So,
the number of variables of governing equations for a
weakly compressible fluid is the same as that for an
incompressible fluid.

DEVSS scheme

In this study, the DEVSS formulation was used to
overcome the elastic stress instability problem. By
introducing D, the DEVSS is constructed on the ba-
sis of eq. (5) as follows:

o quð Þ
ot

þr quuð Þ ¼ �rpþ g
Re

r2u� 2 1� bð Þg
Re

rD

þ 1� 4=3bð Þg
Re

r ruð Þ þ 1

Re
rs ð18Þ

D�D ¼ 0 (19)

WCNBS scheme for FEM formulation

WCNBS scheme

On the basis of the Tait state equation, an implicit
numerical scheme of WCNBS was used to avoid the
LBB condition. Before proceeding with the split pro-
cedure of the fractional step scheme, we considered
the discretization of eq. (5) in the time domain
within a typical time subinterval [tn, tnþ1], which
gave us the form of the Wilson–y method as follows:

qn

Dt
unþ1 � un

 � ¼ � rpð Þnþh �r quuð Þnþh1

þ g
Re

r2u
� �nþh2 þ 1� 4=3bð Þg

Re
r ruð Þ

� �nþh2

� 2 1� bð Þg
Re

rD

� �nþhD

þ 1

Re
rsnþhs ð20Þ

where 0 < y, y1, y2, yD, ys � 1. To construct the frac-
tional step scheme, y = 0 for the pressure gradient
term is required. When y ¼ y1 ¼ y2 ¼ yD ¼ ys ¼ 0.5,
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eq. (20) has the second-order accuracy, which was
adopted in this study for the Crank–Nicolson
scheme.

On the basis of different expressions of pressure,
fractional step algorithms can be classified into two
different forms: the incremental type32 and the non-
incremental type.33,34 Guermond et al.33 proved that
the incremental-type fractional step algorithm had
better stability than the nonincremental-type frac-
tional step algorithm. So, we adopted the -type frac-
tional step algorithm in this study.

With the introduction of an intermediate variable
(u0) and Anþy ¼ yAnþ1 þ (1 � y)An, eq. (20) for the
Crank–Nicolson scheme was split into two parts
(Crank–Nicolson-based splitting) as follows:

qn

Dt
� gnþh2

Re
h2r2

� �
u0 � unð Þ ¼ �rpn �r quuð Þnþh1

þ gnþh2

Re
r2un

 �þ 1� 4=3bð Þg

Re
r ruð Þ

� �nþh2

� 2 1� bð Þg
Re

rD

� �nþhD

þ 1

Re
rsnþhs ð21Þ

qn

Dt
� gnþh2

Re
h2r2

� �
unþ1 � u0
 � ¼ �hr pnþ1 � pn


 �
(22)

Taking the divergence of the vector in eq. (22) and
omitting the high-order term, we obtained

qn

Dt
r unþ1 � u0
 � ¼ �hr pnþ1 � pn


 �
(23)

For nonisothermal weakly compressible flow, on
basis of the q dependence from the pressure and
temperature and the chain-derivation rule, the time
derivative of q is given as follows:

op
ot

¼ oq
op

op
ot

þ oq
oT

oT
ot

(24)

where qq/qp ¼ qa and qq/qT ¼ �qd can be obtained
from eq. (14) and a and d are the coefficients of iso-
thermal compressibility and thermal expansion. The
substitution of eq. (4) and eq. (21) into eq. (20) results
in the pressure equation, which is given as follows:

oq
op

1

Dt
� hDtr2

� �
pnþ1 � pn

 � ¼ �qnru0 � oq

oT
Tnþ1 � Tn

Dt

(25)

Equations (21), (25), and (22) are the first, second,
and third steps, respectively, of the WCNBS scheme.
However, because the second term on the right-
hand side of eq. (25) contains tnþ1, which must be

known before eq. (25) is calculated, eq. (25) is di-
vided into two parts to calculate the pressure:

oq
op

1

Dt
� hDtr2

� �
pnþ1 � pn

 � ¼ �qnru0 (26)

oq
op

1

Dt
� hDtr2

� �
pnþ1 � pn

 � ¼ � oq

oT
Tnþ1 � Tn

Dt
(27)

Before calculating eq. (27), one must update pn
with eq. (26) and introduce the implicit scheme of
energy equation to calculate the temperature.

FEM spatial discretization

In the FEM formulation, the variables u, p, s, and D
are spatially approximated with the standard finite
element shape functions (Nu, Np, Ns, and ND),
which are based on four-node tetrahedral elements
and expressed in terms of their nodal values (u, p; s,
and D, respectively) as follows:

u ¼ Nujuj; p ¼ Npj�pj;D ¼ NDjDj; s ¼ Nsj�sj j ¼ 1; 2; 3; 4

(28)

where Nu, Np, N�, and ND are first-order linear
shape functions (Nu ¼ Np ¼ N� ¼ ND ¼ N). With
the standard Galerkin finite element discretization,
the weak forms of eqs. (19), (21), (22), (26), and (27)
can be written as follows:

MD
nþ1 ¼ Hunþ1 (29)

qn

Dt
Mþ gnþh2

Re
h2K1

� �
u0 � unð Þ ¼ �qnCunþh1

� gnþh2

Re
K1u

n �G�pn � 1� 4=3bð Þgnþh2

Re
K2u

nþh1

þ 2 1� bð ÞgnþhD

Re
K3D

nþhD � 1

Re
K3�s

nþhs ð30Þ

qn

Dt
Mþ gnþh2

Re
h2K1

� �
unþ1 � u0
 � ¼ �hG �pnþ1 � �pn


 �
(31)

oq
op

1

Dt
Mþ hDtK1

� �
�pnþ1 � �pn

 � ¼ �qnJu0 (32)

oq
op

1

Dt
Mþ hDtK1

� �
�pnþ1� �pn

 �¼� oq

oT
1

Dt
M �T

nþ1� �T
n

� �
(33)

And all of the previous matrices are formulated as
follows
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M¼
Z
X
NTNdX;K1 ¼

Z
X

rNð ÞT rNð ÞdX;

K2 ¼
Z
X

rNð ÞT r �Nð ÞdX;K3 ¼
Z
X

r�Nð ÞTNdX;

C¼
Z
X
NTu rNð ÞdX;G¼

Z
X
NT rNð ÞdX;

J¼
Z
X
NT r �Nð ÞdX;H¼ 1=2

Z
X
NTI0SNdX ð34Þ

where N
T
is the transposition of N, d is the differen-

tial, X is the domain of integration, I0 ¼
diag(2,2,2,1,1,1),

S¼
o=ox 0 0 o=oy 0 o=oz

0 o=oy 0 o=ox o=oz 0

0 0 o=oz 0 o=oy o=ox

2
64

3
75
T

:

Temperature and stress solvers for the
FVM formulation

The energy and stress equations were discretized by
the FVM on nonstaggered meshes, and all quantities
were stored on the same nodes. Nodes for the physi-
cal quantities were in the center of the controlling
volume, limited by the dashes.

Energy equation discretization

The discretization of eq. (6) can be written as follows:

apTp ¼ aETE þ aWTW þ aNTN þ aSTS þ aRTR þ aLTL þ ST

(35)

where ST is the source term in the energy equation,
and the coefficients aE, aW, aN, aS, aR, aL, and aP can
be expressed as follows:

aE ¼ DeAðjPejÞ þmaxð�Fe;0Þ;
aW ¼ DwAðjPwjÞ þmaxðFw;0Þ;
aN ¼ DnAðjPnjÞ þmaxð�Fn;0Þ;
aS ¼ DsAðjPsjÞ þmaxðFs;0Þ;
aR ¼ DrAðjPrjÞ þmaxð�Fr;0Þ;
aL ¼ DlAðjPljÞ þmaxðFl;0Þ;
ap ¼ aE þ aW þ aN þ aS þ Peq

DxDyDz
Dt

:

where Pe, Ps, Pw, Pn, Pr, and Pl are the P�eclet num-
bers on the cell faces; Fe, Fs, Fw, Fn, Fr, and Fl are the
flux values of the cell faces; A denote an operator
and it’s expression is given, A(|PD|) ¼ 1; and De,
Ds, Dw, Dn, Dr, and Dl are the diffuse derivatives on
the cell faces. The form A(|PD|) can be different
according to the method by which the convection
terms are discretized. The US was adopted in this

study for strongly convection-dominated problems,
so that A(|PD|) ¼ 1, and all of the previous coeffi-
cients were formulated as follows:

Fe ¼ Pe quð ÞfeDyDz;De ¼ DyDz
xE � xP

;

Pe ¼ Fe
De

;Fw ¼ Pe quð ÞfwDyDz;Dw ¼ DyDz
xP � xW

;Pw ¼ Fw
Dw

;

Fn ¼ Pe qvð ÞfnDxDz;Dn ¼ DxDz
yN � yP

;

Pn ¼ Fn
Dn

;Fs ¼ Pe qvð ÞfsDxDz;Ds ¼ DxDz
yP � yS

;Ps ¼ Fs
Ds

;

Fr ¼ Pe qwð ÞfrDxDy;Dr ¼ DxDy
zE � zP

;

Pr ¼ Fr
Dr

;Fl ¼ Pe qwð ÞflDxDy;Dl ¼ DxDy
zP � zL

;Pl ¼ Fl
Dl

:

(36)

Constitutive equation discretization

The constitutive equation can be written as the fol-
lowing form by a generalized quantity (/):

m
o/
ot

r � ðmu/Þ � r � ðCr/Þ ¼ S/ (37)

The constants and functions in eq. (37) are defined in
Table I. �xx, �yy, �zz, �xy, �xz and �yz are the components
of tensor s in Table I, and the subscript x, y, z denote
the directions. Similarly, the discretization of the consti-
tutive equation can be written as the following form:

asp/p ¼ asE/Eþ asW/W þ asN/N þ asS/Sþ asR/Rþ asL/LþS/

(38)

where S/ is the source term in the constitutive equation
and the coefficients asE; asW; asN; asS; asR; asL; and asP can
be expressed as follows:

asE ¼ Wemaxð�Fe; 0Þ; asW ¼ WemaxðFw; 0Þ;
asN ¼ Wemaxð�Fn; 0Þ;
asS ¼ WemaxðFs; 0Þ; asR ¼ Wemaxð�Fr; 0Þ;
asL ¼ WemaxðFl; 0Þ;
asp ¼ asE þ asW þ asN þ asS þ asR þ asL þWe

DxDyDz
Dt

:

Numerical steps

In terms of the numerical method design, to enhance
the computational efficiency, an iterative procedure
was introduced for the convective terms of the mo-
mentum equations. The detailed numerical steps for
solving the nonisothermal viscoelastic packing stage
are summarized as follows:

Step 1

Provide the initial velocity (u0), initial pressure (p0),
initial density (q0), initial stress (s0), and initial
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temperature (T0) on the grid points and then set the
time-step number to n ¼ 0.

Step 2

Let unþ1
0 ¼ un, snþ1

0 ¼ sn, and set the iterations to i ¼ 1.

Step 3

Calculate unþh
i ¼ (1 � y)un þ yunþ1

i�1 and then calculate
gnþy(unþy) according to eq. (12) at each grid point.
Then, substitute them into eq. (30) to calculate u0.

Step 4

Calculate qq/qP and then obtain pnþ1 by calculating
the pressure from eq. (32).

Step 5

Use pnþ1 and u0 to calculate unþ1
i according to eq. (31).

Step 6

Calculate Dnþ1 according to eq. (29).

Step 7

Update unþh
i ¼ (1 � y)un þ yunþ1

i (u ¼ u, s), and cal-
culate snþ1

i according to eq. (38).

Step 8

Check for the convergence of the ith iteration pro-
cess by |unþ1

i � unþ1
i�1 |1 (where |�|1 is the infinite

norm, u ¼ u, s). If |unþ1
i � unþ1

i�1 |1 < e (e ¼ 10�6),
unþ1 ¼ unþ1

i , otherwise i ¼ i þ1 and go to step 3.

Step 9

Calculate g(unþ1) according to eq. (12) at each grid
point. Use the values of unþ1, snþ1, and qn to calcu-
late them on the cell faces, and then calculate Tnþ1

by eq. (33).

Step 10

Update pn by pnþ1, which is obtained from step 5,
and calculate qq/qP. Then calculate qq/qT and cal-
culate pnþ1 by eq. (31).

TABLE I
Constants and Functions in eq. (37)

Equation U m C S/

�xx �xx We 0 � f ðk; sÞsxx þ 2We
ou
ox

sxx þ 2We
ou
oy

sxy þ 2We
ou
oz

sxz

� aWe

1� b
s2xx þ s2xy þ s2xz

� �
� 1� b

We
f k; zð Þ � 1ð Þ þ 2 1� bð Þ ou

ox
� 2

3

ou
ox

þ ov
oy

þ ow
oz

� �
�xy �xy We 0

We
ov
ox

sxx þWe
ou
ox

þ ov
oy

� �
sxy þWe

ov
oz

sxz þWe
ou
oy

syy þWe
ou
oz

syz

� f k; sð Þsxy � aWe

1� b
sxxsxy þ sxysyy þ sxzsyz

 �þ 1� bð Þ ou

oy
þ ov
ox

� �
�xz �xz We 0

We
ow
ox

sxx þWe
ow
oy

sxy þWe
ow
oz

þ ou
ox

� �
sxz þWe

ou
oy

syz þWe
ou
oz

szz

� f k; sð Þsxz � aWe

1� b
sxxsxy þ sxysyy þ sxzsyz

 �þ 1� bð Þ ou

oz
þ ow

ox

� �
�yy �yy We 0 � f ðk; sÞsyy þ 2We

ov
ox

sxy þ 2We
ov
oy

syy þ 2We
ov
oz

syz

� aWe

1� b
s2xy þ s2yy þ s2yz

� �
� 1� b

We
f k; zð Þ � 1ð Þ þ 2 1� bð Þ ov

oy
� 2

3

ou
ox

þ ov
oy

þ ow
oz

� �
�yz �yz We 0

We
ow
ox

sxy þWe
ov
ox

sxz þWe
ow
oy

syy þWe
ow
oz

þ ov
oy

� �
syz þWe

ou
oz

szz

� f k; sð Þsyz � aWe

1� b
sxysxz þ syysyz þ syzszz

 �þ 1� bð Þ ov

oz
þ ow

oy

� �
�zz �zz We 0 � f ðk; sÞszz þ 2We

ow
ox

sxz þ 2We
ow
oy

syz þ 2We
ow
oz

szz

� aWe

1� b
s2xz þ s2yz þ s2zz

� �
� 1� b

We
f k; zð Þ � 1ð Þ þ 2 1� bð Þ ov

oy
� 2

3

ou
ox

þ ov
oy

þ ow
oz

� �

TABLE II
Cross–WLF Viscosity Model and Thermal Properties

Parameters of ABS 780

Parameter Value Parameter Value

n 2.89 � 10�3 D3 (K/Pa) 0.0
�* (Pa) 3.480 � 104 A1 24.96
D1 (Pa s) 8.62 � 1010 Ã2 (K) 51.6
D2 (K) 3.7315 � 102 j (W/m �C) 0.192
Cp (J kg

�1 �C�1) 1.847 � 103

FULL 3D PACKING AND STRESSES IN INJECTION MOLDING 7

Journal of Applied Polymer Science DOI 10.1002/app



Step 11

Use pnþ1 and Tnþ1 to calculate qnþ1 according to eq.
(7) at the per mesh point.

Step 12

Let n ¼ n þ 1 and go to step 2 until the termination
condition is satisfied.

On the basis of the previous calculating process,
with a VCþþ6.0 programming environment, de-
velop the computing programming for the full 3D
viscoelastic packing process analysis. The calculation
is implemented on a personal computer.

NUMERICAL RESULTS

Viscoelastic planar Poiseuille flow

In this section, the benchmark problems of flows
through a planar channel are modeled on the basis of
Oldroyd-B and XPP models. The polymer acryloni-
trile–butadiene–styrene (ABS) 780 was chosen as the
flow fluid (Kumho Chemicals Inc, Seoul, Korea). The
material parameters of ABS 780, which were obtained
from the materials database of Moldflow software,
are shown in Tables II and III, respectively.

The dimensionless parameters were taken as fol-
lows: Re ¼ 0.00624, Pe ¼ 90,456.825, Br ¼ 7849.58, q ¼
2.0, b ¼ 1/9.0, a ¼ 0.15, and e ¼ 1/3.0. The schematic
of the planar Poiseuille flow is shown in Figure 1. The
length/width ratio was 6 : 1. Time-step termination
was ensured when the L2-norm relative maximum dif-
ference vector between the solution approximations
over two successive time steps fell later than a set
threshold 10�6, where L2-norm denotes the square root
of the squares sum of the vector’s components.

The fully developed flow was imposed at the inlet
given in eq. (39). No-slip conditions were imposed
on the solid boundaries. At the exit, the pressure
was set to zero, and homogeneous Neumann bound-
ary conditions were imposed for the stresses. The

temperatures T ¼ 500 given at the inlet and solid
boundaries temperatures Tw ¼ 490 were imposed on
the solid boundaries:

u ¼ 3

8
1� 4y2

 �

; v ¼ 0 (39)

The analytical solutions for the stresses were35

sxx ¼ 2We 1� bð Þ ou
oy

� �2

; sxy ¼ 1� bð Þ ou
oy

(40)

To test the accuracy of the method, the normal
and shear stresses at steady state were compared
with the analytical solutions. Figure 2 shows the
comparison between the analytical and numerical
solutions of sxx and sxy at We ¼ 0.5. It can be seen
that numerical solutions superimposed each other
and showed very good agreement with the analyti-
cal solutions. Furthermore, the stresses of Poiseuille
flow were the same on the bases of different consti-
tutive equations, such as those from the Oldroyd-B
and XPP models.
The contour distribution of pressure is shown in

Figure 3(a), in which the contours of the pressure
were almost all straight lines. The results prove that
the presented WCNBS method could avoid the LBB
condition for weakly compressible polymer melt
flows. Figure 3(b,c) shows the contour distributions
of normal and shear stresses. It can be seen that the
contours were smooth, even near the exit; this could
attributed to the use of the DEVSS scheme.
Figure 4 shows the normal stress cross section

along x ¼ 3.0 at the center line of the channel for
increasing We. From Figure 4, we see that the

TABLE III
Tait State Equation Parameters of ABS 780

Parameter Value Parameter Value Parameter Value

b1,m (m3/kg) 9.748 � 10�4 b1,s (m
3/kg) 9.748 � 10�4 b5 (K) 3.6175 � 102

b2,m (m3 kg�1 K�1) 6.274 � 10�7 b2,s (m
3 kg�1 K�1) 3.102 � 10�7 b6 (K/Pa) 2.881 � 10�7

b3,m (Pa) 1.764 � 108 b3,s (Pa) 2.417 � 108
b4,m (1/K) 4.556 � 10�3 b4,s (1/K) 4.575 � 10�3

Figure 1 Planar channel geometry in the two-dimen-
sional plane.

Figure 2 Comparison of the stresses between the analyti-
cal and numerical solutions.
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numerical results compared very well with the ana-
lytical solutions.

Full 3D packing process and flow-induced
stresses analysis

To study the evolution and distribution of the flow-
induced stresses of the packing process, a numerical
simulation was performed for a cuboid mold cavity
(10 � 5 � 1), as shown in Figure 5. The material pa-
rameters were the same as those discussed earlier.
Three reference points [P1 (2.5, 0.5, 0.5), P2 (2.5, 5.1,
0.5), and P3 (2.5, 9.5, 0.5)] are given in Figure 5, at
which point P1 is near the gate. The XPP model was
used to simulate the flow-induced stresses of the
packing process.

Initial and boundary conditions

In injection molding, the packing process starts after
the filling stage, so the initial conditions of the pack-
ing stage are the end status of the filling stage, in
which the pressure and temperature values are used
for the packing stage. Because the filling time is usu-
ally short and the temperature changes little, the
temperature is not considered in the filling stage.

For the temperature boundary conditions, T ¼ 513
was given at the gate, Tw ¼ 323 was imposed on the
solid boundaries, and Neumann boundary condi-
tions were imposed at the symmetric axis. Pressure
was imposed at the gate (pholding).

Pressure distribution and discussion

The pressure contours at different times are shown
in Figure 6, from which we see that the pressure val-
ues were digressive from the gate to the end of the
cavity and increased everywhere as the time
increased. Figure 7 shows the pressure evolutions of
the reference points at different times with pholding ¼

Figure 3 Contour distributions of the (a) pressure and
stresses (b) �xx and (c) �xy.

Figure 4 Cross sections of �xx along x ¼ 3.0 with increas-
ing We.

Figure 5 Sketch map and computational area of the
mold.

Figure 6 Pressure contour distributions at different times
with pholding ¼ 105. [Color figure can be viewed in the
online issue, which is available at wileyonlinelibrary.com.]

Figure 7 Pressure evolutions of the reference points at
different times with pholding ¼ 105.
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105. It can be seen that the pressure values of all of the
reference points reached the holding pressure at differ-
ent times, and the reference point near the gate
reached the holding pressure earlier than the other ref-
erence points. The results mentioned previously were
in good agreement with those in the literature.10,11

Flow-induced stresses distribution and discussion

Figures 8 and 9 show the flow-induced stress distri-
butions at different midplanes at dimensionless time
(t) ¼ 0.5 with We ¼ 1.0 and pholding ¼ 105. The com-
ponents of the stress sxz and syz are not be given in
Figure 8 and sxy and sxz are not given in Figure 9
because they were almost zero. It can be seen from
Figures 8 and 9 that N1 and N2 and every compo-
nent of stress were symmetric about the midline.
The stress distributions showed the greatest differ-
ence near the gate, and N1 and N2 were maximum
near the gate, where there existed complex shear

and normal forces. The N1 and N2 profiles of the z ¼
0.5 and x ¼ 2.5 midplanes at different times and y
values with We ¼ 1.0 and pholding ¼ 105 are shown
in Figures 10 and 11. We could see clearly that the
absolute values of N1 and N2 decreased first and
increased afterward with increasing time. Moreover,
the distribution tendencies of N1 at different posi-
tions of flow direction were coincident, and so were
those of N2.

Comparisons of the results between the simulation
and the experiment

To make a comparison with the experimental
results, the linear stress–optical rule6 was adopted to
calculate the flow-induced birefringence, which was
in the x–y plane:

Dn ¼ nx � ny ¼ C sxx � syy

 �2 þ 4s2xy

� �1=2
(41)

Figure 8 Stress distributions of the z ¼ 0.5 midplane at t ¼ 0.5 with We ¼ 1.0 and pholding ¼ 105. [Color figure can be
viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 9 Stress distribution of the x ¼ 2.5 midplane at t ¼ 0.5 with We ¼ 1.0 and pholding ¼ 105. [Color figure can be
viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Figure 10 N1 and N2 profiles of the z ¼ 0.5 midplane at different times and y values with We ¼ 1.0 and pholding ¼ 105.

Figure 11 N1 and N2 profiles of the x ¼ 2.5 midplane at different times and y values with We ¼ 1.0 and pholding ¼ 105.
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where Dn is the flow-induced birefringence, nx and
ny are the refraction indices along the x- and y-axis
directions, respectively; and C is the stress–optical
coefficient of the polymer in the melt state. We
assumed a constant linear stress–optical rule.

These numerical results of flow-induced birefrin-
gence, which were obtained according to the rule in
eq. (41), are shown and compared with the experi-
mental results (see ref. 8) in Figure 12. The basic
principle of the photoelasticity experiment is that
when a ray of plane light passes through an aniso-
tropic material, it experiences two different refrac-
tive indices; this difference leads to a relative retar-
dation and shows up in a polariscope by way of a
fringe pattern.

From Figure 12, it can be seen that the calculated
results coincided well with the experimental results
in tendency, especially for the position far away
from the gate. Nevertheless, there was a small differ-
ence near gate because the gates were not com-
pletely the same.

Influence of the elasticity on the normal stress
differences

The N1 and N2 profiles at t ¼ 0.5 with z ¼ 0.5, y ¼
0.5, pholding ¼ 105, and increasing We are shown in
Figure 13. It can be seen that N1 and N2 were sym-

metric about the x-axis midline. From Figure 13, we
see that the absolute values of N1 and N2 decreased
as We increased. This tendency still helds at differ-
ent positions, as shown in Table IV, which gives the
N1 and N2 values at reference points P1 and P3 at
t ¼ 0.5 with pholding ¼ 105 and increasing We.

Influence of the holding pressure on the normal
stress differences

Figure 14 shows the N1 and N2 values at t ¼ 0.5
with z ¼ 0.5, y ¼ 0.5, We ¼ 0.5, and different hold-
ing pressures. It can be seen that N1 and N2 were
symmetric about the x-axis midline in Figure 14.
Moreover, the holding pressure had a great influ-
ence on the normal stress differences near the gate

Figure 12 Comparisons among the calculated profiles of the flow-induced birefringence: (a) our results, (b) experimental
results from ref. 8, and (c) numerical results from ref. 8.

Figure 13 Influence of the elasticity on the N1 and N2 values at t ¼ 0.5 with z ¼ 0.5, y ¼ 0.5, and pholding ¼ 105.

TABLE IV
Normal Stress Differences at Two Reference Points at t
5 0.5 with We 5 0.5 and Different Holding Pressures

P (104)

P1 P3

N1 N2 N1 N2

7 �0.8955 0.3604 �0.0301 0.0026
8 �1.0443 0.4110 �0.0338 �0.0029

10 �1.3447 0.5095 �0.0410 �0.0034
12 �1.6412 0.6035 �0.0481 �0.0039
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(y ¼ 0.5), and we could see clearly that as the values
of holding pressure increased, the absolute values of
N1 and N2 increased, too. This tendency still held at
different positions, as shown in Table V, which gives
the N1 and N2 values at reference points P1 and P3

at t ¼ 0.5 with We ¼ 0.5 and different holding pres-
sures. Holding pressure increases can make a prod-
uct’s mass increase to decrease the shrinkage,36 but
it makes the flow-induced stress increase, so we
must ensure appropriate holding pressure in the
packing stage to improve the properties of products.

CONCLUSIONS

In this study, a numerical simulation of the full 3D
packing process and flow-induced stresses was
examined on the basis of the XPP model. A hybrid
FEM–FVM was used to solve this model. The nu-
merical results show that

1. The hybrid FEM–FVM could successfully solve
the viscoelastic polymer melt flow model and
simulate the viscoelastic stresses precisely by
solving the benchmark problem.

2. The pressure values were digressive from the
gate to the end of the cavity during the packing

process. Finally, the pressure values reached
holding pressure almost in the whole cavity,
and the pressure value of the reference point
near the gate reached the holding pressure ear-
lier than those of other reference points.

3. The normal stress differences and each stress
component were symmetric about the midline.
The stress distributions showed the greatest
differences near the gate, and the maximum
value of the normal stress differences appeared
near the gate, where there existed complex
shear and normal forces. The absolute values
of N1 and N2 decreased first and increased
afterward with increasing time.

4. By comparison, the calculated flow-induced
birefringence was in agreement with the exper-
imental results in tendency.

5. The absolute values of the normal stress differ-
ences decreased with increasing We and
increased with increasing holding pressure. The
holding pressure and elasticity of the materials
should be considered in the packing process to
improve the properties of the products.

The numerical simulation of the flow-induced
stresses of the packing process was achieved in this
study. We hope that the results obtained have some
valuable references to the actual production process
for improving product quality. Because the existence
of the change phase, in the future, we will consider
the use of an enthalpy transforming model to deal
with this problem for calculating the frozen-in
stresses in plastic parts.
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